Stabilization of relative equilibria for underactuated systems on Riemannian manifolds
نویسنده
چکیده
This paper describes a systematic procedure to exponentially stabilize relative equilibria of mechanical systems. We review the notion of relative equilibria and their stability in a Riemannian geometry context. Potential shaping and damping control are employed to obtain full exponential stabilization of the desired trajectory. Two necessary conditions are that the effective potential be positive definite over a specified subspace and that the system be linearly controllable. Relevant applications to underwater and aerospace vehicle control are described.
منابع مشابه
Reduction, linearization, and stability of relative equilibria for mechanical systems on Riemannian manifolds
Consider a Riemannian manifold equipped with an infinitesimal isometry. For this setup, a unified treatment is provided, solely in the language of Riemannian geometry, of techniques in reduction, linearization, and stability of relative equilibria. In particular, for mechanical control systems, an explicit characterization is given for the manner in which reduction by an infinitesimal isometry,...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملStabilization of relative equilibria
This paper discusses the problem of obtaining feedback laws to asymptotically stabilize relative equilibria of mechanical systems with symmetry. We show how to stabilize an internally unstable relative equilibrium using internal actuators. The methodology is that of potential shaping, but the system is allowed to be underactuated, i.e., have fewer actuators than the dimension of the shape space...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملStabilization of Relative Equilibria II
In this paper, we obtain feedback laws to asymptotically stabilize relative equilibria of mechanical systems with symmetry. We use a notion of stability ‘modulo the group action’ developed by Patrick [1992]. We deal with both internal instability and with instability of the rigid motion. The methodology is that of potential shaping, but the system is allowed to be internally underactuated, i.e....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Automatica
دوره 36 شماره
صفحات -
تاریخ انتشار 2000