Stabilization of relative equilibria for underactuated systems on Riemannian manifolds

نویسنده

  • Francesco Bullo
چکیده

This paper describes a systematic procedure to exponentially stabilize relative equilibria of mechanical systems. We review the notion of relative equilibria and their stability in a Riemannian geometry context. Potential shaping and damping control are employed to obtain full exponential stabilization of the desired trajectory. Two necessary conditions are that the effective potential be positive definite over a specified subspace and that the system be linearly controllable. Relevant applications to underwater and aerospace vehicle control are described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction, linearization, and stability of relative equilibria for mechanical systems on Riemannian manifolds

Consider a Riemannian manifold equipped with an infinitesimal isometry. For this setup, a unified treatment is provided, solely in the language of Riemannian geometry, of techniques in reduction, linearization, and stability of relative equilibria. In particular, for mechanical control systems, an explicit characterization is given for the manner in which reduction by an infinitesimal isometry,...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Stabilization of relative equilibria

This paper discusses the problem of obtaining feedback laws to asymptotically stabilize relative equilibria of mechanical systems with symmetry. We show how to stabilize an internally unstable relative equilibrium using internal actuators. The methodology is that of potential shaping, but the system is allowed to be underactuated, i.e., have fewer actuators than the dimension of the shape space...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Stabilization of Relative Equilibria II

In this paper, we obtain feedback laws to asymptotically stabilize relative equilibria of mechanical systems with symmetry. We use a notion of stability ‘modulo the group action’ developed by Patrick [1992]. We deal with both internal instability and with instability of the rigid motion. The methodology is that of potential shaping, but the system is allowed to be internally underactuated, i.e....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2000